Search results

Search for "redox reactions" in Full Text gives 57 result(s) in Beilstein Journal of Nanotechnology.

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • reported. Most of them employ transition metals such as iron [70], copper [71], cobalt [72], gold [73], manganese [74], platinum [75], or cerium [76] as main elements. Most transition metals have various oxidation states allowing them to generate cycles of redox reactions that are involved in superoxide
  • ]. Similarly, Zeng et al. employed this strategy to fabricate a CeO2 nanozyme-loaded nanovesicle to address hypoxia at the tumor sites [169]. In this system, the CeO2 nanozyme with the ability to generate the cycle of redox reactions continuously provides a significant amount of O2 for assisting cancer
PDF
Album
Review
Published 12 Apr 2024

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • electrochemical sensors (Figure 10). The target analyte interacts with the recognition layer at the sensing electrode surface to produce an electrical signal that contains the analytical information. Chemical reactions (redox reactions) on the electrode surface are converted by the physicochemical transducer into
PDF
Album
Review
Published 01 Jun 2023

Utilizing the surface potential of a solid electrolyte region as the potential reference in Kelvin probe force microscopy

  • Nobuyuki Ishida

Beilstein J. Nanotechnol. 2022, 13, 1558–1563, doi:10.3762/bjnano.13.129

Graphical Abstract
  • Nobuyuki Ishida National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan 10.3762/bjnano.13.129 Abstract In electrochemical measurements, monitoring the electrode potential using a stable reference is essential for controlling the redox reactions that occur at the
  • , in the case of electrochemical devices such as batteries, the redox reactions that occur at the electrode are determined by the potential difference across the electrode–electrolyte interface, not the electrode potential relative to ground. This prevents the accurate consideration of redox reactions
  • potential drop that occurs on the positive (ΔV+) and negative electrode sides (ΔV−) cannot be predicted using only the applied DC voltage. This makes it difficult to analyze the progression of redox reactions at the electrodes, because the redox reactions depend strongly on the potential difference at the
PDF
Album
Full Research Paper
Published 19 Dec 2022

Sodium doping in brookite TiO2 enhances its photocatalytic activity

  • Boxiang Zhuang,
  • Honglong Shi,
  • Honglei Zhang and
  • Zeqian Zhang

Beilstein J. Nanotechnol. 2022, 13, 599–609, doi:10.3762/bjnano.13.52

Graphical Abstract
  • increased due to its importance for photocatalytic application. Ohtani et al. reported that extra-fine brookite TiO2 exhibited good photocatalytic activity for redox reactions in aqueous propan-2-ol and silver sulfate solution [7]. Kobayashi et al. suggested that the photoactivity of brookite nanoparticles
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Influence of thickness and morphology of MoS2 on the performance of counter electrodes in dye-sensitized solar cells

  • Lam Thuy Thi Mai,
  • Hai Viet Le,
  • Ngan Kim Thi Nguyen,
  • Van La Tran Pham,
  • Thu Anh Thi Nguyen,
  • Nguyen Thanh Le Huynh and
  • Hoang Thai Nguyen

Beilstein J. Nanotechnol. 2022, 13, 528–537, doi:10.3762/bjnano.13.44

Graphical Abstract
  • exhibited two redox couple peaks at −0.34 V/−0.76 V and −0.77 V/−1.34 V attributed to the redox reactions of Mo7O246− and MoO42− ions, respectively [27]. The presence of MoO42− ions is due to the equilibrium in Equation 3, which occurs in acidic solution of (NH4)6Mo7O24 (the pH here is about 4.3). The CV
  • cycle of the CV recorded in different concentrations of precursor solution (solution 1.25, 2.5, and 5.0) is shown in Figure 2b. The presence of the redox couple peak at −0.2/−0.75 V can be attributed to the redox reactions of Mo7O246− ions (the anodic peak is slightly shifted towards the anodic
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • hindrance inside the tubular structure. This stage of drug release is known as sustained release. The controlled release of drugs is triggered by various external or internal stimuli. Changes in pH value, redox reactions, and enzyme activity are internal stimuli, while light, magnetic fields, and ultrasound
PDF
Album
Review
Published 14 Feb 2022

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • -efficiency RT Na–S batteries (vide infra). The electrochemical mechanism of RT Na–S batteries is based on the release of sodium cations from the anode leading to the transfer of two electrons that reduce sulfur on the cathode side (Figure 1A) [4]. The redox reactions of the battery are as follows (the
  • polysulfides is not only electrostatic but also involves surface redox reactions. The polysulfides are oxidized to thiosulfate by MnO2 while Mn(IV) is reduced to Mn(III) and Mn(II). Afterwards, the formed thiosulfate interacts with long-chain polysulfides and converts them into short-chain polysulfides. The
PDF
Album
Review
Published 09 Sep 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • molecular design, the built-in functionality of the active part of the molecule can be preserved upon adsorption on a surface. An example of the preservation of catalytic properties is demonstrated for the redox behavior of manganese porphyrins at the solid–liquid interface. Redox reactions at the axial
PDF
Editorial
Published 23 Aug 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • of the nanoparticle core (Auδ + Oδ and Auδ + Sδ), which cannot be neglected following its subsequent leaching [55]. It is also well known that gold cations play a key role in oxidizing substrates in aerobic redox reactions catalyzed by gold nanoparticles [56]. Redox reactions are intrinsic in
PDF
Album
Review
Published 18 Aug 2021

Solution combustion synthesis of a nanometer-scale Co3O4 anode material for Li-ion batteries

  • Monika Michalska,
  • Huajun Xu,
  • Qingmin Shan,
  • Shiqiang Zhang,
  • Yohan Dall'Agnese,
  • Yu Gao,
  • Amrita Jain and
  • Marcin Krajewski

Beilstein J. Nanotechnol. 2021, 12, 424–431, doi:10.3762/bjnano.12.34

Graphical Abstract
  • ][44][45][46][47][48][49][50]. The SCS process is based on strongly exothermic redox reactions in which oxidants, such as metal nitrates, carbonates, or sulfates, react with reducing organic agents, frequently called fuels, such as starch, urea, glycine, or glucose [42][43][45][46][47][48][49][50
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2021

TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters

  • Marco Moors,
  • Yun An,
  • Agnieszka Kuc and
  • Kirill Yu. Monakhov

Beilstein J. Nanotechnol. 2021, 12, 203–212, doi:10.3762/bjnano.12.16

Graphical Abstract
  • applied potential [3], have shown great potential for next-generation information technologies. This change of the electrical resistance often faces local redox reactions inside the oxide layer [4]. From the chemical point of view, the active switching layer can be downsized to individual molecular units
PDF
Album
Full Research Paper
Published 16 Feb 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • production and clearance of ROS in cells are balanced by those enzymatic systems. Nevertheless, when these reactive species are in excess, a set of redox reactions can lead to cell death by the alteration of different essential structures (such as cell membrane, DNA, proteins, and electron transport chain
PDF
Album
Review
Published 25 Sep 2020

Role of redox-active axial ligands of metal porphyrins adsorbed at solid–liquid interfaces in a liquid-STM setup

  • Thomas Habets,
  • Sylvia Speller and
  • Johannes A. A. W. Elemans

Beilstein J. Nanotechnol. 2020, 11, 1264–1271, doi:10.3762/bjnano.11.110

Graphical Abstract
  • ascribed to the occurrence of redox reactions in which chloride is oxidized to chlorine and the Mn(III) center of the porphyrin moiety is reduced to Mn(II). The resulting Mn(II) porphyrin products were identified by UV–vis analysis of the liquid phase. For solutions of Mn(III) porphyrins with non-redox
  • active acetate instead of chloride axial ligands, the currents remained absent. Keywords: manganese; porphyrins; redox reactions; scanning tunneling microscopy; solid–liquid interface; Introduction Manganese(III) porphyrins are well-known catalysts for the epoxidation of alkenes [1][2][3][4]. The
  • sample surface. Such reactions would result in so-called Faradaic currents between the tip and the sample. In the case of MnTUPCl, the following redox reactions at the tip or sample surface can be envisaged: We base these proposed reactions on the fact that the manganese center can be reduced from (III
PDF
Album
Full Research Paper
Published 24 Aug 2020

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  • potential window from 0 to 0.6 V. The humps indicating a pseudocapacitance may be attributed to redox reactions in MoO3 as discussed for the three-electrode measurements. CV measurements have been carried out at different scan rates (Figure 4b). A maximum specific capacitance of 68.4 F·g−1 at a scan rate of
PDF
Album
Supp Info
Letter
Published 17 Apr 2020

High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel

  • Meixia Wang,
  • Jing Zhang,
  • Xibin Yi,
  • Benxue Liu,
  • Xinfu Zhao and
  • Xiaochan Liu

Beilstein J. Nanotechnol. 2020, 11, 240–251, doi:10.3762/bjnano.11.18

Graphical Abstract
  • can provide a much higher specific capacitance as a result of rapid reversible redox reactions [9][10]. Recently, advanced electrode materials based on transition metal molybdates such as NiMoO4 [11], CoMoO4 [12], MnMoO4 [13] and FeMoO4 [14] with suitable oxidation states and unique electrochemical
  • and electrolyte and facilitating the transport of electrons during the redox reactions [33]. Such a hierarchical structure can effectively enlarge the specific surface area of Faradaic reactions and shorten the diffusion pathways for the fast ion transfer, thus increasing the performance of the
  • , which can be attributed to the redox reaction between M2+ and M3+ (M represents Ni and Co elements) and Co3+ and Co4+, as described by the following equations [43]: Therefore, the coexistence of Ni and Co provides multiple redox reactions for the electrochemical process. The peak currents of the CV
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2020

Formation of metal/semiconductor Cu–Si composite nanostructures

  • Natalya V. Yumozhapova,
  • Andrey V. Nomoev,
  • Vyacheslav V. Syzrantsev and
  • Erzhena C. Khartaeva

Beilstein J. Nanotechnol. 2019, 10, 2497–2504, doi:10.3762/bjnano.10.240

Graphical Abstract
  • improvement of the thermal stability of the core and, under the condition of a hermetic coating, reliably protects its surface from redox reactions [3]. Janus-like metal/semiconductor nanoparticles are promising as effective radio-absorbing media and are the basis for creating the elemental basis for
PDF
Album
Full Research Paper
Published 13 Dec 2019

Label-free highly sensitive probe detection with novel hierarchical SERS substrates fabricated by nanoindentation and chemical reaction methods

  • Jingran Zhang,
  • Tianqi Jia,
  • Yongda Yan,
  • Li Wang,
  • Peng Miao,
  • Yimin Han,
  • Xinming Zhang,
  • Guangfeng Shi,
  • Yanquan Geng,
  • Zhankun Weng,
  • Daniel Laipple and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2019, 10, 2483–2496, doi:10.3762/bjnano.10.239

Graphical Abstract
  • substrate, and Ag is formed on the Cu substrate due to redox reactions. Oxygen is generated when the Ag nanoparticles are formed. Table 2 and Table 3 show the distribution of the contents of each element of the internal cavities and pile-ups of cavities with fx = 2 μm and fy = 2 μm. The mass ratio of silver
PDF
Album
Full Research Paper
Published 13 Dec 2019

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • redox reactions but also chemically adsorb polysulfides. In addition, rGO and carbon layer can also enhance the conductivity of C-MoS2/rGO. Therefore, the C-MoS2/rGO, as an efficient sulfur host, could exhibit excellent electrochemical performance. Experimental Preparation of defect-rich C-MoS2/rGO
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Ultrathin Ni1−xCoxS2 nanoflakes as high energy density electrode materials for asymmetric supercapacitors

  • Xiaoxiang Wang,
  • Teng Wang,
  • Rusen Zhou,
  • Lijuan Fan,
  • Shengli Zhang,
  • Feng Yu,
  • Tuquabo Tesfamichael,
  • Liwei Su and
  • Hongxia Wang

Beilstein J. Nanotechnol. 2019, 10, 2207–2216, doi:10.3762/bjnano.10.213

Graphical Abstract
  • from both nickel and cobalt ions in the bimetallic sulfides can provide relatively affluent redox reactions, resulting in higher specific capacitance and electrical conductivity [6][7]. Moreover, layered ultrathin nanoflakes in the synthesised nanomaterials, derived from metal oxides/dichalcogenides
  • from −0.1 to 0.65 V (vs Hg/HgO), which can be attributed to reversible faradaic redox reactions of Co2+/Co3+/Co4+ and Ni2+/Ni3+ associated with the following reaction equations (Equation 6–8) [14][31]: With increased sweep rates, the anodic peaks move in the positive direction and the cathodic peaks
  • energy density of 67.5 Wh·kg−1), and excellent cycling stability and capacity retention. These results can be credited to synergic effects rich and fast redox reactions, high conductivity, as well as highly porous and robust ultrathin nanoflakes structures. (a) X-ray diffraction patterns of Ni1−xCoxS2
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2019

TiO2/GO-coated functional separator to suppress polysulfide migration in lithium–sulfur batteries

  • Ning Liu,
  • Lu Wang,
  • Taizhe Tan,
  • Yan Zhao and
  • Yongguang Zhang

Beilstein J. Nanotechnol. 2019, 10, 1726–1736, doi:10.3762/bjnano.10.168

Graphical Abstract
  • reduction and oxidation peaks, corresponding to the redox reactions of typical Li/S batteries. These observations are consistent with the CV curves. In addition, the plateaus in the discharge–charge profiles are almost overlapped even after the 100th cycle, indicating a stable electrochemical performance of
PDF
Album
Full Research Paper
Published 19 Aug 2019

Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode

  • Ditty Dixon,
  • Deepu Joseph Babu,
  • Aiswarya Bhaskar,
  • Hans-Michael Bruns,
  • Joerg J. Schneider,
  • Frieder Scheiba and
  • Helmut Ehrenberg

Beilstein J. Nanotechnol. 2019, 10, 1698–1706, doi:10.3762/bjnano.10.165

Graphical Abstract
  • oxygen functional groups on the N2-plasma-treated sample was very low, the felt showed enhanced electrochemical performance for both V3+/V2+ as well as V5+/V4+ redox reactions. The result is highly significant as the pristine electrode with the same amount of oxygen functional groups showed significantly
  • were carried out. In contrast to the pristine sample, a prominent V3+/V2+ redox peak is observed for the N2-plasma-treated sample. The CV of the pristine sample is mainly characterized by a hydrogen evolution peak. The CV curves for both negative and positive redox reactions are shown in Figure 5
PDF
Album
Full Research Paper
Published 13 Aug 2019

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • the oxygen activity and redox reactions on surfaces, the next experiment was aimed to study the work function dependence upon controlled reoxidation of reduced oxides. Transition metal oxide nanostructures find manifold applications, especially in various (photo)catalytic processes, e.g., water
PDF
Album
Full Research Paper
Published 02 Aug 2019

Porous N- and S-doped carbon–carbon composite electrodes by soft-templating for redox flow batteries

  • Maike Schnucklake,
  • László Eifert,
  • Jonathan Schneider,
  • Roswitha Zeis and
  • Christina Roth

Beilstein J. Nanotechnol. 2019, 10, 1131–1139, doi:10.3762/bjnano.10.113

Graphical Abstract
  • works described heteroatom doping that should provide more active centres for the vanadium redox reactions, and hence lead to a higher electrochemical activity [14][15][16][17]. But still details of the mechanism are lacking and contradictory suggestions can be found in the literature, as to which
PDF
Album
Full Research Paper
Published 28 May 2019

Concurrent nanoscale surface etching and SnO2 loading of carbon fibers for vanadium ion redox enhancement

  • Jun Maruyama,
  • Shohei Maruyama,
  • Tomoko Fukuhara,
  • Toru Nagaoka and
  • Kei Hanafusa

Beilstein J. Nanotechnol. 2019, 10, 985–992, doi:10.3762/bjnano.10.99

Graphical Abstract
  • redox reactions of electrolyte ions are required to produce efficient and low-cost redox flow batteries (RFBs). Carbon-fiber electrodes are widely used in various types of RFBs and surface oxidation is commonly performed to enhance the redox reactions, although it is not necessarily efficient. Quite
  • photoelectron spectroscopy (XPS). The activity for the vanadium ion redox reactions was evaluated by cyclic voltammetry (CV) to demonstrate the enhancement of both the positive and negative electrode reactions. A full cell test of the vanadium redox flow battery (VRFB) showed a significant decrease of the
  • overpotential and a stable cycling performance. A facile and efficient technique based on the nanoscale processing of the carbon fiber surface was presented to substantially enhance the activity for the redox reactions in redox flow batteries. Keywords: carbon fiber; electrode reactions; metal-oxide
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2019

Synthesis of MnO2–CuO–Fe2O3/CNTs catalysts: low-temperature SCR activity and formation mechanism

  • Yanbing Zhang,
  • Lihua Liu,
  • Yingzan Chen,
  • Xianglong Cheng,
  • Chengjian Song,
  • Mingjie Ding and
  • Haipeng Zhao

Beilstein J. Nanotechnol. 2019, 10, 848–855, doi:10.3762/bjnano.10.85

Graphical Abstract
  • °C. The mechanisms of above preparation method are redox reactions between MnO4− (from KMnO4) and Cl− (from FeCl3 and CeCl3), or Mn7+ and O2− (from KMnO4) as well as MnO4− (from the KMnO4) and Cl− (from CeCl3). The generation of Cl− anions in the preparation process can result in corrosion of the
PDF
Album
Supp Info
Full Research Paper
Published 11 Apr 2019
Other Beilstein-Institut Open Science Activities